Wave overtopping mitigation by a vertical wall or a wave return wall at the end of a pitched rock slope

Jentsje van der Meer Van der Meer Consulting BV; IHE Delft

John Kiong Eunice Chin Yao Ming Yong Martijn Klabbers Junsheng Jiang Hongjuan Han R. Bing

Knowledge

Advisian (Worley), Singapore and Perth, Australia

State Key Laboratory of Coastal and Offshore Engineering; Dalian University of Technology, Dalian, China

Contents

- Objective
- Mitigation options for sea level rise and wave overtopping
- Stability of pitched rock slopes
- Analysis on wave overtopping
- Practical results along EurOtop

Objective

Situation in Singapore

- Relatively mild (design) wave conditions: H_s = 1-2.5 m
- Locally generated: steep waves with $s_{m-1,0} > 0.035$
- Deep water (generally 10-20 m)
- Crest level low and equal to industrial area

Sea level rise will have a significant influence on wave overtopping

What are efficient and practical mitigation options?

Pitched rock slopes

Pitched rock slopes

Pitched rock slopes – single layer, Structure 1

Mitigation: wave wall

Mitigation: wave return wall

Knowledge

1.0 or 1.5 m high

20

Model tests in China, Dalian University of Technology

ICC Institution of Civil Engineers

Knowledge

Single layer

Failure

Institution of Civil Engineers

Structure failed

Stability – Van der Meer formula

Single layer pitched rock

Wave height H_s (m)

Double layer pitched rock

Wave height H_e (m)

8

7

6

5

4

3

2

1

n

0.5

0.6

Damage S_d (-)

Wave overtopping tests

Knowledge

Wave return wall

10-60Kg 100-600kg 10-60kg **2D Wave Model** 2D Wave Model **Tests of Wave Tests of Wave Overtopping and Stability Overtopping and Stability** STRUCTURE 1

Wave wall, with or

without bullnose

EurOtop equations (gentle slope)

Double pitched, all data

ice Institution of Civil Engineer

Single or double pitched - comparison

Institution of Civil Engineers

Single pitched; wave wall

Single pitched; wave wall

Relative freeboard $R_c/(H_{m0}\xi_{m-1.0})$

Single pitched; wall and bullnose 1 m

Institution of Civil Engineers

Single pitched; wall and bullnose 1.5 m

ice

Institution of Civil Enginee

Single pitched; wave return wall

Relative overtopping rate q/(gH_{m0}{}^3)^{0.5} tana^{0.5}/\xi_{m^{-1},0}

Ī

 \mathbf{CE}

Institution of Civil Enginee

Relative freeboard $R_c/(H_{m0}\xi_{m-1,0})$

Double pitched, wave return wall

ICC Institution of Civil Engineers

Conclusions on mitigation options

Restrictions

- (Pitched) rock slopes, one or two layers: mild design wave heights
- Only for high wave steepness: $s_{m-1,0} > 0.035$

Conclusions

• Pitched slopes (above water only) have similar stability as randomly placed rock

- Failure for a single pitched slope occurs at $S_d = 2!$
- Wave wall is very effective, but is an obstacle
- Wave return wall is effective at same crest height
- Model testing gives new influence factors γ_f and γ_v in EurOtop equations

Conclusions on mitigation options

Knowledge

Vertical walls, with or without bullnose; wave return wall; a wave steepness $s_{m-1.0} > 0.035$:

$$\frac{q}{\sqrt{g \cdot H_{m0}^3}} = \frac{0.023}{\sqrt{\tan\alpha}} \gamma_b \cdot \xi_{m-1,0} \cdot \exp[-(2.7 \frac{R_c}{\xi_{m-1,0} \cdot H_{m0} \cdot \gamma_b \cdot \gamma_f \cdot \gamma_\beta \cdot \gamma_v})^{1.3}] \quad \text{EurOtop 5.10}$$

$$\frac{\text{EurOtop random}}{\text{EurOtop random}}$$
Single layer of pitched rock: $\gamma_f = 0.55 \quad 0.6$
Double layer of pitched rock: $\gamma_f = 0.51 \quad 0.55$
A vertical wall on top: $\gamma_v = 1.0$
A bullnose on the vertical wall: $\gamma_v = \gamma_{bn} = 0.85$
A wave return wall $\gamma_v = \gamma_{vrrv} = 0.75$

 $\gamma_v = \gamma_{wrw} = 0.75$

Knowledge

Thank you

Relationship S_d and N_{od} (Van der Meer, JCHS 2021

