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Wave overtopping and to a lesser extent wave run-up for armored rubble slopes
and mounds have been subject to a number of investigations in the past. The
objective of the present chapter is to summarize existing information to be present
as a closed guidance on the use of wave run-up and wave overtopping formulae
for a wide range of possible applications in practice. Therefore, guidance is given
first on the use of wave run-up and wave overtopping formulae for simple slopes,
excluding the effects of composite slopes, direction of wave attack, roughness,
wave walls, etc. Then, formulae are presented to include these parameters in the
calculation procedure. Guidance is also given on wave overtopping volumes, over-
topping velocities, and the spatial distribution as well as for wave overtopping for
shingle beaches. Finally, the effect of model and scale effects on the calculation of
average overtopping rates are discussed. This chapter has mainly been composed
from Chap. 6 of the EurOtop Overtopping Manual (2007), with some additions
from Chap. 5. The present chapter is related to the previous Chap. 14 and the
next Chap. 16 of this manual.

15.1. Introduction

Armored rubble slopes and mounds are characterized by a mound with some
porosity or permeability, covered by a sloping porous armor layer consisting of large
rock or concrete units. In contrast to dikes and embankment seawalls, the porosity
of the structure and armor layer plays a role in wave run-up and overtopping. The
cross section of a rubble mound slope, however, may have great similarities with an
embankment seawall and may consist of various slopes.

As an example for armored slopes and mounds, a rock-armored embankment is
given in Fig. 15.1.

Fig. 15.1. 1:4 rock-armored embankment.
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15.2. Wave Run-Up and Run-Down Levels, Number
of Overtopping Waves

15.2.1. Introduction to wave run-up

The wave run-up height is defined as the vertical difference between the highest point
of wave run-up and the still water level (SWL) (Fig. 15.2). Due to the stochastic
nature of the incoming waves, each wave will give a different run-up level. In many
design formulae, the wave run-up height Ru2% is used as a characteristic parameter
to describe wave run-up. This is the wave run-up height, which is exceeded by 2%
of the number of incoming waves at the toe of the structure. The idea behind this
was that if only 2% of the waves reach the crest of a coastal structure, the crest and
inner slope do not need specific protection measures. It is for this reason that much
research in the past has been focused on the 2%-wave run-up height. In the past
decade the design or safety assessment has been changed to allowable overtopping
instead of wave run-up.

Wave run-up has always been less important for rock-armored slopes and rubble
mound structures, and the crest height of these types of structures has mostly
been based on allowable overtopping, or even on allowable transmission (low-crested
structures). Still an estimation or prediction of wave run-up is valuable as it gives
a prediction of the number or percentage of waves which will reach the crest of the
structure and eventually give wave overtopping. And this number is needed for a
good prediction of individual overtopping volumes per wave, overtopping velocities,
and flow depths.

The general formula that can be applied for the 2% mean wave run-up height
is given by Eq. (15.1): The relative wave run-up height Ru,2%/Hm0 in Eq. (15.1) is
related to the breaker parameter ξm−1,0.

Hm0

h

Ru2%

RC

Ru2% = wave run-up height
R

α

α

C = freeboard
Hm0 = wave height at the toe of the structure
h = water depth at the toe of the structure

= seaward slope steepness

SWL

Fig. 15.2. Definition of the wave run-up height Ru2% on a smooth impermeable slope.
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Ru2%

Hm0
= 1.65 · γb · γf · γβ · ξm−1,0 (15.1)

with a maximum of Ru2%
Hm0

= 1.00 · γb · γf · γβ

(
4.0 − 1.5√

ξm−1,0

)
,

where

Ru2% = wave run-up height exceeded by 2% of the incoming waves [m];
Hm0 = significant wave at the toe of the structure [m];

γb = influence factor for a berm [see 15.3.4(b)] [–];
γf = influence factor for roughness on the slope [–];
γβ = influence factor for oblique wave attack (see 15.3.3) [–];

ξm−1,0 = breaker parameter = tanα/
√

sm−1,0 = tan α
/√

2πHm0/(gT 2
m−1,0) [–];

tanα = average slope angle (see Fig. 15.2) [–];
Tm−1,0 = spectral moment at the toe of the structure, based on m−1 and m0 [s].

The breaker or surf similarity parameter ξm−1,0 relates the slope steepness tan α
(or 1/n) to the fictitious wave steepness sm−1,0 = 2πHm0/(gT 2

m−1,0) and is often
used to distinguish different breaker types. The combination of structure slope and
wave steepness gives a certain type of wave breaking (Fig. 15.3).

For ξm−1,0 > 2–3 waves are considered not to be breaking (surging waves),
although there may still be some breaking, and for ξm−1,0 < 2–3 waves are breaking.
Waves on a gentle foreshore break as spilling waves and more than one breaker
line can be found on such a foreshore. Plunging waves break with steep and over-
hanging fronts and the wave tongue will hit the structure or back washing water.
The transition between plunging waves and surging waves is known as collapsing.
The wavefront becomes almost vertical, and the water excursion on the slope (wave
run-up + run-down) is often largest for this kind of breaking. Values are given for
the majority of the larger waves in a sea state. Individual waves may still surge for
generally plunging conditions or plunge for generally surging conditions.

The relative wave run-up height increases linearly with increasing ξm−1,0 in
the range of breaking waves and small breaker parameters less than about 2.
For nonbreaking waves and higher breaker parameters, the increase is less and

Fig. 15.3. Type of breaking on a slope.
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becomes more or less horizontal. The relative wave run-up height Ru,2%/Hm0 is also
influenced by the geometry of the structure, the effect of wind, and the properties
of the incoming waves.

15.2.2. Wave run-up on rock-armored slopes

Figure 15.4 gives 2% wave run-up heights for various rocks slopes with cot α = 1.5,
2, 3, and 4, and for an impermeable and permeable core of the rubble mound. These
run-up measurements were performed during the stability tests on rock slopes of
van der Meer.11 First of all, the graph gives values for a large range of the breaker
parameter ξm−1,0, due to the fact that various slope angles were tested, but also
with long wave periods (giving large ξm−1,0-values). Most breakwaters have steep
slopes 1:1.5 or 1:2 only and then the range of breaker parameters is often limited
to ξm−1,0 = 2–4. The graph gives rock slope information outside this range, which
may be useful also for slopes with concrete armor units.

The highest curve in Fig. 15.4 gives the prediction for smooth straight slopes
(γf = 1). A rubble mound slope dissipates significantly more wave energy than an
equivalent smooth and impermeable slope. Not only both the roughness and porosity
of the armor layer cause this effect, but also the permeability of the under-layer and
core contribute to it. Figure 15.4 shows the data for an impermeable core (geotextile
on sand or clay underneath a thin under-layer) and for a permeable core (such as
most breakwaters). The difference is most significant for large breaker parameters.

Equation (15.2) includes the influence factor for roughness γf . For two layers of
rock on an impermeable core, γf = 0.55. This reduces to γf = 0.40 for two layers of
rock on a permeable core. This influence factor is used in the linear part of the run-
up formula, say, for ξm−1,0 ≤ 1.8. From ξm−1,0 = 1.8, the roughness factor increases
linearly up to 1 for ξm−1,0 = 10, and it remains 1 for larger values.
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Fig. 15.4. Relative run-up on straight rock slopes with permeable and impermeable core, com-
pared to smooth impermeable slopes.
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The prediction for the 2% mean wave run-up value for rock or rough slopes can
be described by

Ru2%

Hm0
= 1.65 · γb · γf · γβ · ξm−1,0 , (15.2)

with a maximum of Ru2%
Hm0

= 1.00 · γb · γf surging · γβ

(
4.0 − 1.5√

ξm−1,0

)
.

From ξm−1,0 = 1.8, the roughness factor γfsurging increases linearly up to 1
for ξm−1,0 = 10,

which can be described by
γfsurging = γf + (ξm−1,0 − 1.8) · (1 − γf )/8.2
γfsurging = 1.0 for ξm−1,0 > 10.

For a permeable core, however, a maximum is reached for Ru2%/Hm0 = 1.97.
The physical explanation for this is that if the slope becomes very steep (large
ξm−1,0-value) and the core is impermeable, the surging waves slowly run up and
down the slope, and all the water stays in the armor layer, leading to a fairly high
run-up. The surging wave actually does not “feel” the roughness anymore and acts
as a wave on a very steep smooth slope. For a permeable core, however, the water can
penetrate into the core which decreases the actual run-up to a constant maximum
(the horizontal line in Fig. 15.4).

Equation (15.2) may also give a good prediction for run-up on slopes armored
with concrete armor units, if the right roughness factor is applied.

Deterministic design or safety assessment. For design or a safety assessment
of the crest height, it is advised not to follow the average trend, but to include the
uncertainty of the prediction. As the basic equation is similar for a smooth and a
rough slope, the method to include uncertainty is also the same. This means that
for a deterministic design or safety assessment, Eq. (15.3) should be used:

Ru2%

Hm0
= 1.75 · γb · γf · γβ · ξm−1,0 , (15.3)

with a maximum of Ru2%
Hm0

= 1.00 · γb · γf surging · γβ

(
4.3 − 1.6√

ξm−1,0

)
.

From ξm−1,0 = 1.8, the roughness factor γfsurging increases linearly up to 1
for ξm−1,0 = 10, which can be described by

γfsurging = γf + (ξm−1,0 − 1.8) · (1 − γf )/8.2
γfsurging = 1.0 for ξm−1,0 > 10.

For a permeable core a maximum is reached for Ru2%/Hm0 = 2.11.

Probabilistic design. For probabilistic calculations, Eq. (15.2) should be used
together with a normal distribution and variation coefficient of CoV = 0.07. For
prediction or comparison of measurements, the same Eq. (15.2) is used, but now for
instance with the 5% lower and upper exceedance lines.
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15.2.3. Number of overtopping waves or overtopping percentage

Till now only the 2% run-up value has been described. It might be that one is
interested in another percentage, for example, on the design of breakwaters where
the crest height may be determined by an allowable percentage of overtopping waves,
say, 10–15%. A few ways exist to calculate run-up heights for other percentages, or
to calculate the number of overtopping waves for a given crest height. van der Meer
and Stam10 give two methods. One is an equation like Eq. (15.2) with a table of
coefficients for the 0.1%, 1%, 2%, 5%, 10%, and 50% (median). Interpolation is
needed for other percentages.

The second method gives a formula for the run-up distribution as a function of
wave conditions, slope angle, and permeability of the structure. The distribution is a
two-parameter Weibull distribution. With this method, the run-up can be calculated
for every percentage required. Both methods apply to straight rock slopes only and
will not be described here. The given references, however, give all the details.

The easiest way to calculate run-up (or overtopping percentage) different from
2% is to take the 2%-value and assume a Rayleigh distribution. The probability
of overtopping Pov = Now/Nw (the percentage is simply 100 times larger) can be
calculated by

Pov = Now/Nw = exp

[
−

(√− ln 0.02
Rc

Ru,2%

)2
]

, (15.4)

where

Pov = probability of overtopping [–];
Now = number of overtopping waves in a sea state [–];
Nw = number of waves in a sea state [–];
Rc = crest freeboard [m].

Equation (15.4) can be used to calculate the probability of overtopping, given a
crest freeboard Rc or to calculate the required crest freeboard, given an allowable
probability or percentage of overtopping waves.

One warning should be given in applying Eqs. (15.2)–(15.4). The equations give
the run-up level in percentage or height on a straight (rock-armored) slope. This
is not the same as the number of overtopping waves or overtopping percentage.
Figure 15.5 gives the difference. The run-up is always a point on a straight slope,
where for a rock-armored slope or mound the overtopping is measured some distance
away from the seaward slope and on the crest, often behind a crown wall. This means
that Eqs. (15.2)–(15.4) always give an overestimation of the number of overtopping
waves.

Figure 15.6 shows measured data for rubble mound breakwaters armored with
Tetrapods, AccropodeTM, or a single layer of cubes. All tests were performed at
Delft Hydraulics.

The test setup was more or less similar to Fig. 15.4 with a crown wall height
Rc a little lower than the armor freeboard Ac. CLASH-data on specific over-
topping tests for various rock and concrete armored slopes were added to Fig. 15.6.
This figure gives only the percentage of overtopping waves passing the crown wall.
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Fig. 15.5. Run-up level and location for overtopping differ.
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Fig. 15.6. Percentage of overtopping waves for rubble mound breakwaters as a function of relative
(armor) crest height and armor size (Rc ≤ Ac).

Analysis showed that the size of the armor unit relative to the wave height had
influence, which gave a combined parameter Ac ·Dn/H2

m0, where Dn is the nominal
diameter of the armor unit.

The figure covers the whole range of overtopping percentages, from com-
plete overtopping with the crest at or lower than SWL to no overtopping at all.
The CLASH-data give maximum overtopping percentages of about 30%. Larger
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percentages mean that overtopping is so large that it can hardly be measured and
that wave transmission starts to play a role.

Taking 100% overtopping for zero freeboard (the actual data are only a little
lower), a Weibull curve can be fitted through the data. Equation (15.5) can be used
to predict the number or percentage of overtopping waves or to establish the armor
crest level for an allowable percentage of overtopping waves.

Pov = Now/Nw = exp

[
−

(
AcDn

0.19H2
m0

)1.4
]

. (15.5)

It is clear that Eqs. (15.2)–(15.4) will come to more overtopping waves than
Eq. (15.5). But both estimations together give a designer enough information to
establish the required crest height of a structure given an allowable overtopping
percentage.

15.2.4. Wave run-down on rock-armored slopes

When a wave on a structure has reached its highest point, it will run down on the
slope till the next wave meets this water and run-up starts again. The lowest point
to where the water retreats, measured vertically to SWL, is called the run-down
level. Run-down often is less or not important compared to wave run-up, but both
together they may give an idea of the total water excursion on the slope. Therefore,
only a first estimate of run-down on straight rock slopes is given here, based on the
same tests of van der Meer,11 but re-analyzed with respect to the use of the spectral
wave period Tm−1,0. Figure 15.7 gives an overall view.

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9

Breaker parameter ξm- 1,0

R
e

la
ti

v
e

 r
u

n
-d

o
w

n
 R

d
2

%
/H

m
0

imp; cota=2 imp; cota=3 imp; cota=4
perm; cota=1.5 perm; cota=2 perm; cota=3
hom; cota=2 imp; Deltaflume perm; Deltaflume

Fig. 15.7. Relative 2% run-down on straight rock slopes with impermeable core (imp), permeable
core (perm), and homogeneous structure (hom).
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The graph shows clearly the influence of the permeability of the structure as the
solid data points (impermeable core) generally show larger run-down than the open
data symbols of the permeable core. Furthermore, the breaker parameter ξm−1,0

gives a fairly clear trend of run-down for various slope angles and wave periods.
Figure 15.7 can be used directly for design purposes, as it also gives a good idea of
the scatter.

15.3. Overtopping Discharges

15.3.1. Simple armored slopes

The mean overtopping discharge is often used to judge allowable overtopping. It
is easy to measure, and an extensive database on mean overtopping discharge has
been gathered in CLASH. This mean discharge does not of course describe the real
behavior of wave overtopping, where only large waves will reach the top of the
structure and give overtopping. Random individual wave overtopping is random in
time, and each wave gives a different overtopping volume. But the description of
individual overtopping is based on the mean overtopping, as the duration of over-
topping multiplied with this mean overtopping discharge gives the total volume of
water overtopped by a certain number of overtopping waves. The mean overtopping
discharge has been described in this section. The individual overtopping volumes is
the subject in Sec. 15.4.1.

Wave overtopping occurs if the crest level of the coastal structures is lower
than the highest wave run-up level. In that case, the freeboard Rc defined as
the vertical difference between the SWL and the crest height becomes important
(Fig. 15.2). Wave overtopping depends on the freeboard Rc and increases for
decreasing freeboard height Rc. Usually, wave overtopping for rubble slopes and
mounds is described by an average wave overtopping discharge q, which is given in
m3/s per m width, or in l/s per m width.

An average overtopping discharge q can only be calculated for quasi-stationary
wave and water level conditions, a so-called sea state. If the amount of water over-
topping for a structure during a storm is required, the average overtopping discharge
has to be calculated for each more or less constant storm water level and constant
wave conditions.

Many model studies were performed to investigate the average overtopping
discharge for specific dike geometries or wave conditions. For practical purposes,
empirical formulae were fitted through experimental model data which obey often
one of the following expressions:

Q∗ = Q0 (1 − R∗)b or Q∗ = Q0 exp (−b · R∗) . (15.6)

Q∗ is a dimensionless overtopping discharge, R∗ is a dimensionless freeboard
height, Q0 describes wave overtopping for zero freeboard, and b is a coefficient
which describes the specific behavior of wave overtopping for a certain structure.
Schüttrumpf8 summarized expressions for the dimensionless overtopping discharge
Q∗ and the dimensionless freeboard height R∗.
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The dimensionless overtopping discharge Q∗ = q/
√

gH3
m0 is a function of the

wave height, originally derived from the Weir formula.

Deterministic design or safety assessment. The equation, including a
standard deviation of safety, should be used for deterministic design or safety
assessment:

q√
g · H3

m0

=
0.067√
tanα

γb · ξm−1,0

· exp
(
−4.3

Rc

ξm−1,0 · Hm0 · γb · γf · γβ · γv

)
(15.7)

with a maximum of q√
g·H3

m0

= 0.2 · exp
(
−2.3 Rc

Hm0·γf ·γβ

)
,

where γv = the influence of a small wall on top of the embankment.

Probabilistic design. The mean prediction should be used for probabilistic
design, or prediction of or comparison with measurements. This equation is given by

q√
g · H3

m0

=
0.067√
tan α

γb · ξm−1,0

· exp
(
−4.75

Rc

ξm−1,0 · Hm0 · γb · γf · γβ · γv

)
(15.8)

with a maximum of q√
g·H3

m0

= 0.2 · exp
(
−2.6 Rc

Hm0·γf ·γβ

)
.

The reliability of Eq. (15.8) is described by taking the coefficients 4.75 and
2.6 as normally distributed stochastic parameters with means of 4.75 and 2.6 and
standard deviations σ = 0.5 and 0.35, respectively. For probabilistic calculations,
Eq. (15.8) should be taken together with these stochastic coefficients. For predictions
of measurements or comparison with measurements also Eq. (15.8) should be taken
with, for instance, 5% upper and lower exceedance curves.

It has to be mentioned that the first part of Eqs. (15.7) and (15.8) is valid
for mostly breaking waves. Considering the steep slopes of armored rubble slope
and mounds this part has less importance in practice than the second part of the
equation, describing the maximum of overtopping. In that case, the relative free-
board does not depend on the breaker parameter ξm−1,0 for nonbreaking waves
(Fig. 15.8), as the line is horizontal.

This means that a composite slope and even a, not too long, berm leads to the
same overtopping discharge as for a simple straight rubble mound slope. Only when
the average slope becomes so gentle that the maximum part in Eqs. (15.7) and
(15.8) do not apply anymore, then a berm and a composite slope will have effect on
the overtopping discharge. Generally, average slopes around 1:2 or steeper do not
show influence of the slope angle, or only to a limited extent, and the maximum
part in Eqs. (15.7) and (15.8) are valid.
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As part of the EU research program CLASH2 tests were undertaken to derive
roughness factors for rock-armored slopes and different armor units on sloping
permeable structures. Overtopping was measured for a 1:1.5 sloping permeable
structure at a reference point 3Dn50 from the crest edge, where Dn50 is the nominal
diameter. The wave wall had the same height as the armor crest, so Rc = Ac. As
discussed in Sec. 15.2 and Fig. 15.5, the point to where run-up can be measured
and the location of overtopping may differ. Normally, a rubble mound structure has
a crest width of at least 3Dn50. Waves rushing up the slope reach the crest with an
upward velocity. For this reason, it is assumed that overtopping waves reaching the
crest will also reach the location 3Dn50 further.

Results of the CLASH-work are shown in Fig. 15.9 and Table 15.1. Figure 15.9
gives all data together in one graph. Two lines are given, one for a smooth slope,
Eq. (15.8) with γf = 1.0, and one for rubble mound 1:1.5 slopes, with the same
equation, but with γf = 0.45. The lower line only gives a kind of average, but shows
clearly the very large influence of roughness and permeability on wave overtopping.
The required crest height for a steep rubble mound structure is at least half of that
for a steep smooth structure, for similar overtopping discharge. It is also for this
reason that smooth slopes are often more gentle in order to reduce the crest heights.

In Fig. 15.9, one-layer systems, like Accropode
TM

, CORE-LOC R©, Xbloc R©, and
one layer of cubes, have solid symbols. Two-layer systems have been given by open
symbols. There is a slight tendency that one-layer systems give a little more over-
topping than two-layer systems, which is also clear from Table 15.1. Equation (15.8)
can be used with the roughness factors in Table 15.1 for the prediction of mean
overtopping discharges for rubble mound breakwaters. Values in italics in Table 15.1
have been estimated/extrapolated, based on the CLASH results.
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Fig. 15.9. Mean overtopping discharge for 1:1.5 smooth and rubble mound slopes.

Table 15.1. Values for roughness factors γf for per-
meable rubble mound structures with slope of 1:1.5.
Values in italics are estimated/extrapolated.

Type of armor layer γf

Smooth impermeable surface 1.00
Rocks (one layer, impermeable core) 0.60
Rocks (one layer, permeable core) 0.45
Rocks (two layers, impermeable core) 0.55
Rocks (two layers, permeable core) 0.40
Cubes (one layer, random positioning) 0.50
Cubes (two layers, random positioning) 0.47
Antifers 0.47
HARO’s 0.47
AccropodeTM 0.46
Xbloc R© 0.45
CORE-LOC R© 0.44
Tetrapods 0.38
Dolosse 0.43

15.3.2. Effect of armored crest berm

Wave overtopping on simple straight slope include an armored crest berm up to
about three nominal diameters. It is clear, however, that wide crests will certainly
decrease the overtopping as much more energy will be dissipated in a wider crest.
The crest width can be described by Gc (see Fig. 15.5). The EA-Manual (Besley1)
describes in a simple and effective way the influence of a wide crest. First, the wave
overtopping discharge should be calculated for a simple slope, with a crest width
up to 3Dn50. Then, the following reduction factor on the overtopping discharge can
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be applied:

Cr = 3.06 exp(−1.5Gc/Hm0), with maximum Cr = 1. (15.9)

Equation (15.9) gives no reduction for a crest width smaller than about
0.75 Hm0. This is fairly close to about 3Dn50 and is, therefore, consistent. A crest
width of 1Hm0 reduces the overtopping discharge to 68%, a crest width of 2Hm0

gives a reduction to 15%, and for a wide crest of 3Hm0, the overtopping reduces
to only 3.4%. In all cases, the crest wall has the same height as the armor crest:
Rc = Ac.

Equation (15.9) was determined for a rock-armored slope and can be considered
as conservative, as for a slope with Accropode, more reduction was found.

15.3.3. Effect of oblique waves

In the CLASH-project, specific tests on a rubble mound breakwater were performed
with a slope of 1:2 and armored with rock or cubes7 to investigate the effect of
oblique waves on wave overtopping. The structure was tested both with long-crested
and short-crested waves, but only the results by short-crested waves are given.
Results for the effect of oblique waves on smooth slopes, dikes, or embankments are
given in the EurOtop Overtopping Manual,4 and in the TAW-report.9 Here, only
the results for armored rubble mound slopes will be discussed.

For oblique waves, the angle of wave attack β (deg.) is defined as the angle
between the direction of propagation of waves and the axis perpendicular to the
structure (for perpendicular wave attack, β = 0◦). And the direction of wave attack
is the angle after any change of direction of the waves on the foreshore due to
refraction. Just like for smooth slopes, the influence of the angle of wave attack is
described by the influence factor γβ . Just as for smooth slopes, there is a linear
relationship between the influence factor and the angle of wave attack, but the
reduction in overtopping for rock slopes is faster with increasing angle:

γβ = 1 − 0.0063|β| for 0◦ ≤ |β| ≤ 80◦
(15.10)

for |β| > 80◦, the result of β = 80◦can be applied.

The wave height and period are linearly reduced to 0 for 80◦ ≤ |β| ≤ 110◦. For
|β| > 110◦, the wave overtopping is set to q = 0.

15.3.4. Composite slopes and berms, including berm breakwaters

In every formula where a cot α or breaker parameter ξm−1,0 is present, a procedure
has to be described how a composite slope has to be taken into account. Hardly any
specific research exists for rubble mound structures, and, therefore, the procedure for
composite slopes at sloping impermeable structures like dikes and sloping seawalls
is assumed to be applicable.

(a) Average slopes. A characteristic slope is required to be used in the breaker
parameter ξm−1,0 for composite profiles or bermed profiles to calculate wave run-
up or wave overtopping. Theoretically, the run-up process is influenced by a change
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of slope from the breaking point to the maximum wave run-up height. Therefore,
often it has been recommended to calculate the characteristic slope from the point
of wave breaking to the maximum wave run-up height. This approach needs some
calculation effort, because of the iterative solution since the wave run-up height
Ru2% is unknown. For the breaking limit, a point on the slope can be chosen which
is 1.5Hm0 below the still water line.

It is recommended to use also a point on the slope 1.5Hm0 above water as a first
estimate to calculate the characteristic slope and to exclude a berm (Fig. 15.10).

First estimate: tanα =
3 · Hm0

LSlope − B
. (15.11)

As a second estimate, the wave run-up height from the first estimate is used to
calculate the average slope [LSlope has to be adapted (see Fig. 15.11)]:

Second estimate: tanα =

(
1.5 · Hm0 + Ru2%(from 1st estimate)

)
LSlope − B

. (15.12)
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Fig. 15.10. Determination of the average slope (first estimate).
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Fig. 15.11. Determination of the average slope (second estimate).
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If the run-up height or 1.5Hm0 comes above the crest level, then the crest level
must be taken as the characteristic point above SWL.

Also, the influence of a berm in a sloping profile has been adapted from smooth
sloping sea dikes for rubble mound structures. There is, however, often a difference
in the effect of composite slopes or berms for rubble mound and smooth gentle
slopes. On gentle slopes, the breaker parameter ξm−1,0 has large influence on wave
overtopping (see Eqs. (15.2) and (15.3) as the breaker parameter will be quite
small). Rubble mound structures often have a steep slope, leading to the formula for
“nonbreaking” waves, the maximum in Eqs. (15.7) and (15.8). In these equations,
no slope angle or breaker parameter is present, and the effect of a small berm will
be very small and probably negligible.

(b) Influence of berms. A berm is a part of a dike or breakwater profile in
which the slope varies between horizontal and 1:15. A berm is defined by the width
of the berm, B, and by the vertical difference dB between the middle of the berm
and the SWL (Fig. 15.12). The width of the berm, B, may not be greater than
0.25 · Lm−1,0. If the berm is horizontal, the berm width B is calculated according
to Fig. 15.12. The lower and the upper slope are extended to draw a horizontal
berm without changing the berm height dB . The horizontal berm width is therefore
shorter than the angled berm width. dB is 0 if the berm lies on the still water line.
The characteristic parameters of a berm are defined in Fig. 15.12.

SWL 1.0 HS1.0 HS

B

LBerm

db

1.0 HS

SWL

Bangled

db

Bhorizontal

(a) Calculation of width B and height db of berm

(b) Calculation of berm length Lberm

Fig. 15.12. Determination of the characteristic berm length LBerm.
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A berm reduces wave run-up or wave overtopping. The influence factor γb for a
berm consists of two parts.

γb = 1 − rB (1 − rdb) for 0.6 ≤ γb ≤ 1.0. (15.13)

The first part (rB) stands for the width of the berm LBerm and becomes 0 if no
berm is present.

rB =
B

LBerm
. (15.14)

The second part (rdb) stands for the vertical difference dB between the SWL and
the middle of the berm and becomes 0 if the berm lies on the still water line. The
reduction of wave run-up or wave overtopping is maximum for a berm on the still
water line and decreases with increasing dB. Thus, a berm lying on the still water
line is most effective. A berm lying below 2 · Hm0 or above Ru2% has no influence
on wave run-up and wave overtopping.

Different expressions are used for rdB in Europe. Here, an expression using
a cosine-function for rdb (Fig. 15.13) is recommended which is also used in pc-
overtopping (see Chap. 14).

rdb = 0.5 − 0.5 cos
(

π
db

Ru2%

)
for a berm above SWL ,

rdb = 0.5 − 0.5 cos
(

π
db

2 · Hm0

)
for a berm below SWL , (15.15)

rdb = 1 for berms lying outside the area of influence .
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The maximum influence of a berm is actually always limited to γB = 0.6. This
corresponds to an optimal berm width B on the SWL of B = 0.4 · LBerm.

The definition of a berm is made for a slope smoother than 1:15, while the
definition of a slope is made for slopes steeper than 1:8. If a slope or a part of the
slope lies in between 1:8 and 1:15, it is required to interpolate between a bermed
profile and a straight profile. For wave run-up, this interpolation is written by

Ru2% = Ru2%(1:8slope) +
(
Ru2%(Berm) − Ru2%(1:8slope)

) · (1/8 − tan α)
(1/8 − 1/15)

. (15.16)

A similar interpolation procedure should be followed for wave overtopping.

15.3.5. Wave overtopping on a berm breakwater

A specific type of rubble mound structure is the berm breakwater. The original idea
behind the berm breakwater is that a large berm, consisting of fairly large rock, is
constructed into the sea with a steep seaward face. The berm height is higher than
the minimum required for construction with land-based equipment. Due to the steep
seaward face the first storms will reshape the berm and finally a structure will be
present with a fully reshaped S-profile. Such a profile has then a gentle 1:4 or 1:5
slope just below the water level and steep upper and lower slopes (see Fig. 15.14).

The idea of the reshaping berm breakwater has evolved in Iceland to a more or
less nonreshaping berm breakwater (Fig. 15.15). The main difference is that during
rock production from the quarry, care is taken to gather a few percent of really
big rocks. Only a few percent is required to strengthen the corner of the berm and
part of the down slope and upper layer of the berm in such a way that reshaping
will hardly occur. An example with various rock classes (class I being the largest)
is given in Fig. 15.16. Therefore, distinction has been made between conventional
reshaping berm breakwaters and the nonreshaping Icelandic type berm breakwater.

In order to calculate wave overtopping on reshaped berm breakwaters, the
reshaped profile should be known. The basic method of profile reshaping is given
in van der Meer,11 and the program breakwat (WL | Delft Hydraulics) is able
to calculate the profile. The first method described here to calculate wave over-
topping at reshaping berm breakwaters is by using Eqs. (15.7) or (15.8) which have
been developed for smooth slopes. Equations (15.7) and (15.8) include the effect of
an average slope with the roughness factors given in Table 15.1 of γf = 0.40 for

Fig. 15.14. Conventional reshaping berm breakwater.
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Fig. 15.15. Icelandic berm breakwater.

Fig. 15.16. Nonreshaping Icelandic berm breakwater with various classes of big rocks.

reshaping berm breakwaters and γf = 0.35 for nonreshaping Icelandic berm break-
waters. The method of composite slopes and berms should be applied as described
above.

The second method is to use the CLASH neural network. As overtopping
research at that time on berm breakwaters was limited, this method also gives quite
some scatter, but a little less than the first method described above.

Recent information on berm breakwaters has been described by Andersen.5 Only
part of his research was included in the CLASH database and consequently in the
Neural Network prediction method. He performed about 600 tests on reshaping
berm breakwaters and some 60 on nonreshaping berm breakwaters (fixing the steep
slopes by a steel net). The true nonreshaping Icelandic type of berm breakwaters
with large rock classes, has not been tested and, therefore, his results might lead to
an overestimation.

One comment should be made on the application of the results of Andersen.5

The maximum overtopping discharge measured was only q/(gH3
m0)

0.5 = 10−3. In
practical situations with wave heights around 5m, the overtopping discharge will
then be limited to only a few l/s per m width. For berm breakwaters and also for
conventional rubble slopes and mounds, allowable overtopping may be much higher
than this value.
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The final result of the work of Andersen5 is a quite complicated formula, based
on multi-parameter fitting. The advantage of such a fitting is that by using a large
number of parameters, the data set used will be quite well described by the formula.
The disadvantage is that physical understanding of the working of the formula,
certainly outside the ranges tested, is limited. But, due to the fact that so many
structures were tested, this effect may be neglected.

The formula is valid for berm breakwaters with no superstructure and gives the
overtopping discharge at the back of the crest (Ac = Rc). In order to overcome
the problem that one encounters when calculating the reshaped profile before any
overtopping calculation can be done, the formula is based on the “as built” profile,
before reshaping. Instead of calculating the profile, a part of the formula predicts the
influence of waves on recession of the berm. The parameter used is called fHo, which
is an indicative measure of the reshaping, and can be defined as a “factor accounting
for the influence of stability numbers.” Note that fHo is a dimensionless factor
and not the direct measure of recession and that Ho and To are also dimensionless
parameters (see below).

fHo = 19.8s−0.5
om exp(−7.08/Ho) for To ≥ T ∗

o ,

fHo = 0.05HoTo + 10.5 for To < T ∗
o ,

(15.17)

where

Ho = Hm0/∆Dn50, To = (g/Dn50)0.5Tm0,1,

and

T ∗
o = {19.8s−0.5

om exp(−7.08/Ho) − 10.5}/(0.05Ho).

The berm level dh is also taken into account as an influence factor, d∗h. Note
that the berm depth is positive if the berm level is below SWL, and therefore, for
berm breakwaters often negative. Note also that this influence factor is different
from that for a bermed slope. This influence factor is described by

d∗h = (3Hm0 − dh)/(3Hm0 + Rc) for dh < 3Hm0 ,

d∗h = 0 for dh ≥ 3Hm0 .
(15.18)

The final overtopping formula then takes into account the influence factor on
recession, fHo, the influence factor of the berm level, d∗h, the geometrical param-
eters Rc, B, and Gc, and the wave conditions Hm0 and the mean period Tm0,1. It
means that the wave overtopping is described by a spectral mean period, and not
by Tm−1,0.

q/(gH3
m0)

0.5 = 1.79 · 10−5 (f1.34
Ho + 9.22)s−2.52

op ∗,

exp[−5.63(Rc/Hm0)0.92 − 0.61(Gc/Hm0)1.39 − 0.55h1.48
b∗ (B/Hm0)1.39 . (15.19)

Equation (15.19) is only valid for a down slope of 1:1.25 and an upper slope of
1:1.25. For other slopes, one has to reshape the slope to a slope of 1:1.25, keeping
the volume of material the same and adjusting the berm width B and for the upper
slope also the crest width Gc. Note also that in Eq. (15.19), the peak wave period
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Tp has to be used to calculate sop, where the mean period Tm0,1 has to be used in
Eq. (15.17).

Although no tests were performed on the nonreshaping Icelandic berm break-
waters (see Fig. 15.16), a number of tests were performed on nonreshaping struc-
tures by keeping the material in place with a steel net. The difference may be that
Icelandic berm breakwaters show a little less overtopping, due to the presence of
larger rocks and, therefore, more permeability. The tests showed that Eq. (15.19) is
also valid for nonreshaping berm breakwaters, if the reshaping factor fHo = 0.

15.3.6. Effect of wave walls

Most breakwaters have a wave wall, capping wall, or crest unit on the crest, simply
to end the armor layer in a good way and to create access to the breakwater. For
design, it is advised not to design a wave wall much higher than the armor crest,
for the simple reason that wave forces on the wall will increase drastically if directly
attacked by waves and not hidden behind the armor crest. For rubble mound slopes
as a seawall, design waves might be a little lower than for breakwaters and a wave
wall might be one of the solutions to reduce wave overtopping. Nevertheless, one
should realize the increase in wave forces in designing a wave wall significantly above
the armor crest.

Equations (15.7) and (15.8) for a simple rubble mound slope include a berm of
3Dn50 wide and a wave wall at the same level as the armor crest: Ac = Rc. A little
lower wave wall will hardly give larger overtopping, but no wave wall at all would
certainly increase overtopping. Part of the overtopping waves will then penetrate
through the crest armor. No formulae are present to cope with such a situation,
unless the use of the Neural Network prediction method.

Various researchers have investigated wave walls higher than the armor crest.
None of them compared their results with a graph like Fig. 15.9 for simple rubble
mound slopes. During the writing of the EurOtop Overtopping Manual, 2007, some
of the published equations were plotted in Fig. 15.7 and most curves fell within the
scatter of the data. Data with a wider crest gave significantly lower overtopping, but
that was due to the wider crest, not the higher wave wall. In essence, the message
is: use the height of the wave wall Rc and not the height of the armored crest Ac in
Eqs. (15.7) and (15.8) if the wall is higher than the crest. For a wave wall lower than
the crest armor the height of this crest armor should be used. The Neural Network
prediction might be able to give more precise predictions.

15.3.7. Scale and model effect corrections

Results of the recent CLASH-project suggested significant differences between field
and model results on wave overtopping. This has been verified for different sloping
rubble structures. Results of the comparisons in this project have led to a scaling
procedure which is mainly dependent on the roughness of the structure γf [–]; the
seaward slope m of the structure [–]; the mean overtopping discharge, upscaled to
prototype, qss [m3/s/m]; and whether wind is considered or not.

Data from the field are naturally scarce, and hence the method can only be
regarded as tentative. Furthermore, it is only relevant if mean overtopping rates are
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Fig. 15.17. Proposed adjustment factor applied to data from two field sites (Zeebrugge 1:1.4

rubble mound breakwater, and Ostia 1:4 rubble slope).

lower than 1.0 l/s/m but may include significant adjustment factors below these
rates. Due to the inherent uncertainties, the proposed approach tries to be conser-
vative. It has, however, been applied to pilot cases in CLASH and has proved good
corrections with these model data.

The adjustment factor fq for the model and scale effects can be determined as
follows (Fig. 15.17):

fq =

{
1.0 for qss ≥ 10−3m3/s/m ,

min{(− log qss − 2)3; fq,max} for qss ≥ 10−3m3/s/m ,
(15.20)

where fq,max is an upper bound to the adjustment factor fq and can be calculated
as follows:

fq,max =




fq,r for γf ≤ 0.7 ,

5 · γf · (1 − fq,r) + 4.5 · (fq,r − 1) + 1 for 0.7 < γf ≤ 0.9 ,

1.0 for γf > 0.9 .

(15.21)

In Eq. (15.21), fq,r is the adjustment factor for rough slopes which is mainly
dependent on the slope of the structure and whether wind needs to be included or
not:

fq,r =




1.0 for m ≤ 0.6 ,

fw · (8.5 · m − 4.0) for 0.6 < m ≤ 4.0 ,

fw · 30 for m > 4.0 ,

(15.22)

in which m = cotα (slope of structure); fw accounts for the presence of wind and
is set to fw = 1.0 if there is wind and fw = 0.67 if there is no wind.

This set of equations include the case of smooth dikes which will, due to γf = 0.9
in this case, always lead to an adjustment factor of fq = 1.0. In case of a very rough
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1:4 slope with wind fq,max = fqr = 30.0, which is the maximum, the factor can get
to (but only if the mean overtopping rates get below qss = 10−5 m3/s per m). The
latter case and a steep rough slope is illustrated in Fig. 15.14.

15.4. Individual Overtopping Waves

15.4.1. Overtopping volumes per wave

The following section is a summary of Sec. 14.2.2 in Chap. 14 of this handbook.
Parts of that section are repeated in the following with a focus on rubble mound
structures.

Wave overtopping is a dynamic and irregular process and the mean overtopping
discharge, q, does not cover this aspect. But by knowing the storm duration, t, and
the number of overtopping waves in that period, Now, it is easy to describe this
irregular and dynamic overtopping, if the overtopping discharge, q, is known. Each
overtopping wave gives a certain overtopping volume of water, V , with dimension
m3 per m width or l per m width.

As many equations in this chapter, the two-parameter Weibull distribution
describes the behavior quite well. This equation has a shape parameter, b, and a
scale parameter, a. The shape parameter gives a lot of information on the type of
distribution.

The exceedance probability, PV , of an overtopping volume per wave is similar
to Eqs. (15.23) and (15.24).

PV = P (V ≤ V ) = 1 − exp

[
−

(
V

a

)0.75
]

, (15.23)

with

a = 0.84 · Tm · q

Pov
= 0.84 · Tm · q · Nw/Now = 0.84 · q · t/Now . (15.24)

Equation (15.24) shows that the scale parameter depends on the overtopping
discharge, but also on the mean period (not the spectral period Tm−1,0!) and prob-
ability of overtopping, or which is similar, on the storm duration and the actual
number of overtopping waves.

The probability of wave overtopping for rubble mound structures has been
described in Sec. 15.2 and Eq. (15.4).

Equations for calculating the overtopping volume per wave for a given proba-
bility of exceedance is given by Eq. (15.25):

V = a · [− ln (1 − PV )]4/3 . (15.25)

The maximum overtopping during a certain event is fairly uncertain, as most
maxima, but depends on the duration of the event. In a 6-h period, one may expect
a larger maximum than only during 15min. The maximum during an event can be
calculated by Eq. (15.26):

Vmax = a [ln (Now)]4/3
. (15.26)
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15.4.2. Overtopping velocities and spatial distribution

The hydraulic behavior of waves on rubble mound slopes and on smooth slopes like
dikes, is generally based on similar formulae, as clearly shown in this chapter. This
is different, however, for overtopping velocities and spatial distribution of the over-
topping water. A dike or sloping impermeable seawall generally has an impermeable
and more or less horizontal crest. Up-rushing and overtopping waves flow over the
crest, and each overtopping wave can be described by a maximum velocity and flow
depth. These velocities and flow depths form the description of the hydraulic loads
on crest and inner slope and are part of the failure mechanism “failure or erosion
of inner slopes by wave overtopping.”

This is different for rubble mound slopes or breakwaters where wave energy is
dissipated in the rough and permeable crest and where often overtopping water
falls over a crest wall onto a crest road or even on the rear slope of a breakwater.
A lot of overtopping water travels over the crest and through the air before it hits
something else.

Only recently in CLASH and a few other projects at Aalborg University,
attention has been paid to the spatial distribution of overtopping water at break-
waters with a crest wall.6 The spatial distribution was measured by various trays
behind the crest wall. Figure 15.18 gives different cross sections with a setup of
three arrays.

Up to six arrays have been used. The spatial distribution depends on the level
with respect to the rear side of the crest wall and the distance from this rear wall
(Fig. 15.19). The coordinate system (x, y) starts at the rear side and at the top of
the crest wall, with the positive y-axis downward.

The exceedance probability F of the travel distance is defined as the volume of
overtopping water passing a given x- and y-coordinate, divided by the total over-
topping volume. The probability, therefore, lies between 0 and 1, with 1 at the
crest wall. The spatial distribution can be described with the following equations,
which have slightly been rewritten and modified with respect to the original for-
mulae by Andersen and Burcharth.6 The probability F at a certain location can be

Fig. 15.18. Definition of y for various cross sections.
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Fig. 15.19. Definition of x- and y-coordinate for spatial distribution.

described by

F (x, y) = exp[−1.3/Hm0 · {max(x/ cos β − 2.7ys0.15
op ; 0)}] . (15.27)

Equation (15.27) can be rewritten to calculate directly the travel distance x (at
a certain level y) by rewriting the above equation:

x/ cosβ = −0.77Hm0 ln(F ) + 2.7ys0.15
op . (15.28)

Suppose cosβ = 0, then we get F = 1 with x = 0; F = 0.1 with x = 1.77Hs; and
F = 0.01 with x = 3.55Hs.

It means that 10% of the volume of water travels almost two wave heights
through the air and 1% of the volume travels more than 3.5 times the wave height.
These percentages will be higher if y �= 0, which is often the case with a crest unit.

The validity of Eqs. (15.27) and (15.28) is for rubble mound slopes of approxi-
mately 1:2 and for angles of wave attack between 0◦ ≤ |β| < 45◦. It should be noted
that the equation is valid for the spatial distribution of the water through the air
behind the crest wall. All water falling on the basement of the crest unit will, of
course, travel on and will fall into the water behind and/or on the slope behind.

15.5. Overtopping of Shingle Beaches

Shingle beaches differ from the armored slopes principally in the size of the beach
material, and hence its mobility. The typical stone size is sufficiently small to permit
significant changes of beach profile, even under relatively low levels of wave attack.
A shingle beach may be expected to adjust its profile to the incident wave conditions,
provided that sufficient beach material is available. Run-up or overtopping levels on
a shingle beach are therefore calculated without reference to any initial slope.

The equilibrium profile of shingle beaches under (temporary constant) wave
conditions is described by van der Meer.11 The most important profile parameter
for run-up and overtopping is the crest height above SWL, hc. For shingle with
Dn50 < 0.1m, this crest height is only a function of the wave height and wave
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steepness. Note that the mean wave period is used, not the spectral wave period
Tm−1,0.

hc/Hm0 = 0.3s−0.5
om . (15.29)

Only the highest waves will overtop the beach crest and most of this water will
percolate through the material behind the beach crest. Equation (15.29) gives a
run-up or overtopping level which is more or less close to Ru2%.
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